Hot-carrier reliability of submicron NMOSFETs and integrated NMOS low noise amplifiers

نویسندگان

  • Sasan Naseh
  • M. Jamal Deen
  • Chih-Hung Chen
چکیده

The effects of hot-carrier stress (HCS) on the performance of NMOSFETs and a fully integrated low noise amplifier (LNA) made of NMOSFETs in a 0.18 lm CMOS technology are studied. The main effects of HCS on single NMOSFETs are an increase in threshold voltage and a decrease in channel carrier mobility, which lead to a drop in the biasing current of the transistors. In the small-signal model of the transistor, hot-carrier effects appear as a decrease in the transconductance and an increase of the output conductance. No clear change was observed in the parasitic gate–source and gate–drain capacitances in the devices under test due to hot carriers. The main effects of hot carriers in the LNA were a drop of the power gain and an increase of its noise figure. The input and output matching, S11 and S22, slightly increased after hot-carrier stress. The thirdorder input-referred intercept point (IIP3) of the LNA improved after stress. This is believed to be due to the improvement of the linearity of the current–voltage (I–V) characteristics of the transistors in the LNA at the particular operating point where they were biased. 2005 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-frequency noise in hot-carrier degraded nMOSFETs

This paper discusses the low-frequency (LF) noise in submicron nMOSFETs under controlled transistor aging by hot-carrier stress. Both traditional, steady-state LF noise as well as the LF noise under periodic large-signal excitation were found to increase upon device degradation, for both hydrogen passivated and deuterium passivated Si–SiO2 interfaces. As hot-carrier degradation is slower in deu...

متن کامل

Electrical characteristics of nMOSFETs fabricated on hybrid orientation substrate with amorphization/templated recrystallization method

The use of hybrid orientation technology (HOT) with direct silicon bond (DSB) wafers consisting of a (1 1 0) crystal orientation layer bonded to a bulk (1 0 0) handle wafer provides promising opportunities for easier migration of bulk CMOS designs to higher performance materials. However, the material quality of nMOSFETs regions, which has been undergone amorphization/templated recrystallizatio...

متن کامل

Relevance of Grooved Nmosfets in Ultra Deep Submicron Region in Low Power Applications

To manage the increasing static leakage in low power applications, solutions for leakage reduction are sought at the device design and process technology levels. In this paper, 90nm, 70nm and 50 nm groovedgate nMOS devices are simulated using Silvaco device simulator. By changing the corner angle and adjusting few structural parameters, static leakage reduction is achieved in grooved nMOSFETS i...

متن کامل

Reduced temperature dependence of hot carrier degradation in deuterated nMOSFETs

Deuterated oxides exhibit prolonged hot carrier lifetimes at room temperature. We report evidence that this improved hot carrier hardness exists over the temperature range between -25 °C and 200 °C. However, the benefit of deuterium incorporation deceases with increasing stress temperature. Furthermore the VT -shift shows a remarkable absence of temperature dependence for the deuterated samples...

متن کامل

Hot-carrier reliability evaluation for CMOS devices and circuits

As CMOS scaling continues, the traditional DC device-level hot-carrier reliability criteria becomes difficult to meet for newer generations of technology. In order to satisfy hot-carrier reliability requirements by using AC circuit-level criteria, issues of AC device degradation under circuit operation and impact of device degradation on circuit performance need to be examined. In order to sati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microelectronics Reliability

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2006